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Purpose. To develop a predictive population pharmacokinetic/
pharmacodynamic (PK/PD) model for repaglinide (REP), an oral
hypoglycemic agent, using artificial neural networks (ANNs).
Methods. REP, glucose concentrations, and demographic data from a
dose ranging Phase 2 trial were divided into a training set (70%) and
a test set (30%). NeuroShell Predictor™ was used to create predictive
PK and PK/PD models using population covariates; evaluate the rela-
tive significance of different covariates; and simulate the effect of
covariates on the PK/PD of REP. Predictive performance was evalu-
ated by calculating root mean square error and mean error for the
training and test sets. These values were compared to naive averaging
(NA) and randomly generated numbers (RN).
Results. Covariates found to have an influence on PK of REP include
dose, gender, race, age, and weight. Covariates affecting the glucose
response included dose, gender, and weight. These differences are
not expected to be clinically significant.
Conclusions. We came to the following three conclusions: 1) ANNs
are more precise than NA and RN for both PK and PD; 2) the bias
was acceptable for ANNs as compared with NA and RN; and 3)
neural networks offer a quick and simple method for predicting, for
identifying significant covariates, and for generating hypotheses.
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INTRODUCTION

Since the re-introduction of artificial neural networks
(ANNs) in the late 1980s, these empirical pattern-recognition
and mapping tools have been applied to complex multifacto-
rial problems in many scientific disciplines (1). In the phar-
maceutical sciences, these tools have been evaluated for for-
mulation design and optimization (2–5), interspecies scaling
(6), in vitro–in vivo correlation (7, 8), population pharmaco-
kinet ic (PK) analys i s (9 , 10) , pharmacokinet ic–
pharmacodynamic (PK-PD) modeling, and quantitative struc-
ture–activity relationships (11–14). In general, the pattern-
recognition or mapping capabilities of the ANN tools appear
to be on par with traditional statistical tools. The major ad-

vantages of ANNs over traditional statistical tools include
their parallel, highly nonlinear, and non-parametric mapping
capabilities. However, the empirical nature of ANN mappings
tends to discourage their utility because the underlying
mechanistic relationships are not apparent or are difficult to
decipher. One approach for defining the underlying relation-
ships in an ANN mapping is to use a trained ANN as a simu-
lation tool.

The objectives of this study were to investigate the utility
of ANNs for recognizing relationships between subject demo-
graphic variables, PK parameters, and PD response to the
drug repaglinide (Prandin�, Novo Nordisk, Princeton, New
Jersey). This drug was selected for these investigations be-
cause our attempts at developing traditional population PK
and PD models were not successful due (in part) to large
intersubject variability. Information for appropriate dosing,
which was included in the drug label (package insert), was
derived via subgroup analysis of several clinical studies. The
results of ANN mapping and simulations are compared with
the results of the subgroup analysis.

Repaglinide is a unique oral insulin secretogogue, unre-
lated to the sulfonylureas, which was approved for the treat-
ment of type-2 diabetes mellitus in 1998. Repaglinide (REP)
differs from other insulin secretogogues, i.e., sulfonylureas, by
chemical structure, binding site, and pharmacokinetics. The
activity of REP is dependent on functioning �-cells in the
pancreatic islets. It stimulates insulin release by binding to
ATP-dependent K+ channels in the �-cell membrane, sites
that are distinguishable from those of sulfonylureas. Potas-
sium channel blockade results in �-cell membrane depolar-
ization, subsequent Ca2+ channel opening, Ca2+ influx, and
induction of insulin secretion.

After oral administration, REP is rapidly absorbed from
the gastrointestinal (GI) tract. Maximum plasma concentra-
tions are reached at approximately 1 h post-dosing in healthy
volunteers, as well as in diabetic patients. REP has an abso-
lute bioavailability of about 56%. It is metabolized by oxida-
tive biotransformation (cytochrome P-450 enzyme system)
and direct glucuronidation to inactive metabolites. REP is
rapidly cleared from the body, with a terminal half-life of
about 1 h. The chemical structure of REP is shown in Fig-
ure 1.

METHODS

Population PK–PD analysis was performed on data gen-
erated by a Phase II, placebo-controlled, parallel design,
dose-ranging study in patients with type-2 diabetes. A total of
145 patients were randomized to one of six treatment groups:
placebo, repaglinide 0.25 mg, 0.5 mg, 1.0 mg, 2.0 mg, and 4.0
mg. Each patient was dosed three times daily 15 min after a
standardized meal for 4 weeks. Samples for the determination
of blood glucose and REP plasma levels were collected over
24 h on Days 0, 7, 14, and 28. Non-compartmental PK analysis
was used to calculate REP as well as glucose area under the
curve (AUCs). Data from the above study were randomly
partitioned into a training set (70%) and a test set (30%). A
predictive PK model using neural network analysis (Neuro-
shell Predictor™, Ward Systems Group, Frederick, MD) was
created using gender, age, weight, dose, and week of treat-
ment as inputs (covariates or independent variables) and
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REP AUC as output (dependent variable). The model was
then used to predict REP AUC using covariates from the test
data set, which was naive to the model. Predictive perfor-
mance was evaluated by calculating the root mean square
error (RMSE), a measure of precision, and the mean error
(ME), a measure of bias (15).

Similarly, a predictive PK–PD model was created using
the same covariates as the PK model, except that REP AUC
was included as an additional covariate, and glucose AUC
(PD measurement) was used as the output or dependent vari-
able. Again, predictive performance was evaluated by calcu-
lating the RMSE and ME for the training and test data sets.
Predictive performance was further evaluated by comparing
RMSE and ME of the neural network PK and PK–PD models
to those obtained by naive averaging (NA) of the data and
values generated randomly (RN) within the dependent vari-
able range, using Microsoft� Excel, version 5.

Using simulations, the predictive PK and PK–PD models
obtained through neural network analysis were used to ex-
plore the effect of various patient demographics (weight, age,
and gender) on the PK–PD of REP. For example, keeping all
covariates constant, REP AUC was predicted for male and
female patients as age and weight were varied over a range
represented by the data. This was done for the lowest and
highest dose of REP. Furthermore, a dose–response curve
was created for both male and female patients.

Finally, the genetic algorithm component of NeuroShell
Predictor™ was used to evaluate the relative significance of
the covariates (or inputs) on the PK and PD of REP.

RESULTS

Figure 2, a and b, is a graphical representation of the
dependent variables, repaglinide AUC, and percent change
from baseline glucose AUC, respectively, across all subjects
in the test data set. The plots connect observed and predicted
values, providing a qualitative assessment of the predictive
performance of the PK (Fig. 2a) and PD (Fig. 2b) models. The
predictive performance of the models can be evaluated rela-
tive to RN and NA (sum of all observed values divided by the
number of observations). Plots with model predictions closely
following observed data, compared to RN and NA, suggest
that the neural network model achieved predictive learning
during the training process. Figure 2a shows that the PK
model created by neural network analysis appears to predict
with precision REP AUCs for test subjects. This is readily

apparent when the predicted plot is compared to the plots
generated by NA and RN.

In Figure 2b, however, the PD model appears to predict
observed response with less precision when compared with
the PK model. The model was less successful in predicting
percent change from baseline (glucose AUC). This may be
attributable to the variable nature of glucose control, where
multiple physiologic and unknown factors can influence glu-
cose levels.

Table I provides a comparison of the predictive perfor-
mance of the PK and PD neural network models. It lists
precision (RMSE) and bias (ME) values, plus their 95% con-
fidence intervals, for the training and test data sets. In Table
II, the precision and bias of the neural network models are
compared with NA and RN. This provides a comparison of
the predictive performance of the PK and PD models created
by ANN analysis relative to NA of data and RN. It should be
noted that the precision and bias values listed in Table II are
those of the test data set because it consists of data that were
not used in model development. This allows for an unbiased
comparison between the three approaches (ANN, NA, and
RN).

The relative importance of different covariates was de-
termined using a genetic algorithm. The results are shown in
Figure 3a for the PK model and Figure 3b for the PK–PD
model. In Figure 3a, week of treatment appears to have the

Fig. 1. Chemical structure of repaglinide.

Fig. 2. Model predictions (−) for the test data set across observed
values (symbols) of Repaglinide AUC (a) and % change from base-
line for Glucose AUC (b); this figure provides a quick assessment of
the models’ pharmacokinetic and pharmacodynamic predictive per-
formance relative to naive averaging of data and randomly generated
numbers.
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least effect on the PK parameter evaluated (REP AUC). This
suggests an absence of drug accumulation and/or self-induced
metabolism. The week of treatment, as well as race, appear to
have little influence on the pharmacodynamic response (per-
cent change from baseline for glucose AUC). Dose and
weight, however, appear to predominate relative to the other
covariates. This is consistent with the nature of the disease
and its treatment.

The effect of weight, gender, and age on the exposure–
response relationship for REP was evaluated using simula-
tions. Figure 4a illustrates the effect of age on the REP AUC-
Glucose AUC (percent change from baseline) in male pa-
tients using the lowest dose tested (0.25 mg REP). In Figure
4b, the same simulations are presented, but for female pa-

tients. The simulations were replicated using the highest dose
(4 mg REP). The results are shown in Figure 5a for males and
Figure 5b for females. In the simulations, all covariates were
kept constant with exception of the covariate under evalua-
tion (e.g., age). The latter was varied over a range represen-
tative of the data. It should be noted that the range for REP
AUC (x-axis, Figs. 4 and 5) was higher for women relative to
men. This reflected the observation that women had higher
REP blood levels compared to men.

Finally, Figure 6 illustrates dose–response plots for males
and females. Percent change from baseline for glucose AUC
is plotted as a function of the four REP doses used in the
clinical trial.

DISCUSSION

The PK model created by ANN analysis predicted with
precision REP AUC in the test data set, which was naive to
the model. Visual inspection of the model prediction plot
(Fig. 2a) showed that the model achieved learning during the
training process that was generalized to the test data set. The
model was clearly more predictive than NA of the data or
RN. This was confirmed after the calculation of precision and
bias values for the training as well as the test data sets.

Evaluation of the predictive performance of the PK–PD
model, using visual inspection of model predictions in Fig. 2b,
suggests that model performance was not as precise relative
to the PK model. The model prediction plot seems to “miss”
a good number of observations (percent change from baseline
for glucose AUC), suggesting less learning was achieved dur-
ing the training process. This may result when the appropriate
covariates are not identified for model development, and/or

Fig. 3. Relative significance of patient covariates, on a scale between
0 (no contribution to predictive model) and 1 (total contribution) for
the pharmacokinetic (a) and pharmacodynamic (b) models.

Table I. Neural Network Predictive Performance: Comparison of
Root Mean Square Error (RMSE) and Mean Error (ME) and Con-

fidence Intervals for the Training and Test Sets

Training Test

Pharmacokinetic
RMSE 113 125

95% CI (89, 132) (67, 163)
ME 0.0 22.6
95% CI (−10.6, 10.6) (−2.7, 47.9)

Pharmacokinetic-
pharmacodynamic Training Test

RMSE 15.7 14.3
95% CI (14.0, 17.2) (12.4, 15.9)
ME 0.0 −1.3
95% CI (−1.4, 1.5) (−4.2, 1.7)

Fig. 4. Simulations showing change from baseline glucose AUC as a
function of repaglinide AUC in men (a) and women (b) for the 0.25
mg dose of repaglinide. The effect of age (within the range of the
data) is also shown.
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when insufficient data is available for training. The former is
more likely true for this study, given what we know about the
variable nature of glucose control in type 2 diabetes. For
example, numerous known and unknown factors, in addition
to drug therapy, contribute to changes in glucose levels in a
patient. Therefore, a good PK–PD model, using glucose levels
as the PD endpoint, is difficult to obtain.

Predictive performance values listed in Table I show
good precision with minimal bias when test sets are compared
to their respective training sets. This is true for both the PK as
well as the PK–PD model. A large RMSE value relative to the
observed values would indicate poor model performance. Ad-
ditionally, a large ME value, which can be greater than or less
than zero, is diagnostic of systemic bias in model predictions.
These two parameters are compared for the models obtained

by ANN analysis, NA, and RN in Table II. For the PK model,
ANN predictions were more precise than NA and signifi-
cantly better than RN (RMSE of 125 vs. 204 and 429, respec-
tively). In terms of bias, ANN performed reasonably well
relative to NA, which by definition has zero bias, and it per-
formed significantly better than RN.

If we compare RMSE values for the PK-PD model across
different methods (ANN, NA, and RN), it is readily apparent
that ANN did not perform significantly better than NA
(RMSE of 14 vs.15, respectively). This is another indication
that the PK–PD model achieved less learning during training
relative to the PK model. Again, this can be attributed to the
difficulties associated with the use of glucose levels as a PD
endpoint. Evaluation of bias measurements (Table II) for the
PK–PD model reveals similar bias estimates across the three
methods.

In addition to creating PK and PK–PD models using
ANN, the relative importance (on a scale of zero to one) of
the different covariates used in model building was evaluated
by the genetic algorithm component of NeuroShell Predic-
tor™. The covariates evaluated for the PK model included
week of treatment, dose, gender, race, age, and weight. The
results as shown in Fig. 3a indicate that the week of treatment
had least influence on the pharmacokinetics of REP. This
suggests that over the 4-week study period, no significant
accumulation, induction, or inhibition occurred. The other
covariates had some influence on the PK, although none were
as predominant.

Covariates used in the development of the PK–PD model
included week of treatment, dose, gender, race, age, weight,
and REP AUC. Analysis by the genetic algorithm of the soft-
ware indicated that week of treatment had little or no effect
on REP PD. The relatively small contribution of the week of
treatment, as is illustrated in Fig. 3b, suggests no significant
tolerance to drug effect developed over the course of the
study. Similarly, race did not appear to have a significant
influence on the PD of REP. Dose and weight, on the other
hand, seem to have the most significant contribution relative
to the other covariates. The former would suggest a dose–
response relationship, whereas the latter reflects what is
known about the effect of body weight on glucose levels.

The effect of selected covariates on the exposure–
response relationship of REP was evaluated through simula-
tions (Figs. 4 and 5). The PK–PD model created by ANN was
used for the simulations. Holding all covariates constant, re-
sponse was simulated over a range of AUCs represented by
the data for the lowest and highest dose. Exposure–response
plots were generated to evaluate the effect of gender and age.
The ranges for age selected for the simulations represented

Table II. Precision (RMSE) and Bias (ME) Comparison between
Neural Network Analysis, Naı̈ve Averaging of Data, and Randomly

Generated Numbers for the Test Data Set

ANN NA RN

Pharmacokinetic
RMSE 125 204 429
ME 22.6 0.00 −244

Pharmacokinetic-Pharmacodynamic
RMSE 14 15 27
ME −1.28 0.00 1.49Fig. 6. Model predicted dose–response relationship for repaglinide in

male and female patients with type-2 diabetes.

Fig. 5. Simulations showing change from baseline glucose AUC as a
function of repaglinide AUC in men (a) and women (b) for the 4-mg
dose of repaglinide. The effect of age (within the range of the data)
is also shown.
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data-rich regions of the data set used for training. Extrapola-
tion to outside of the data range was avoided.

The results for the lowest dose (Fig. 4, a and b) suggest a
slightly greater response for male patients relative to female
patients. The same trend was seen for the higher dose as well
(Fig. 5, a and b). It is interesting to note that females had
greater exposure (AUCs) at similar doses. The PD response,
however, was less than that of males. This is consistent with
the determination by the genetic algorithm that in this study,
dose was more important than AUC in determining response
(Fig. 4b). The gender differences seen in PK as well as PD
were not deemed clinically significant.

Finally, dose–response curves for REP were generated
holding all covariates constant except for gender. The graph
shown in Figure 6 seems to confirm the absence of a clinically
significant, gender-based difference in PD. This conclusion is
consistent with results from studies conducted by Novo Nor-
disk using traditional statistical analysis.

In conclusion, the use of ANN (NeuroShell Predictor™)
to create PK and PK–PD models was fast, relatively easy, and
yielded results that were consistent with traditional methods.
Additionally, this approach was useful for generating hypoth-
esis and evaluating “what-if” scenarios. The PK model per-
formed better than the PK–PD model in terms of precision of
predictions, although both models did well with regard to
bias. Female patients had larger AUCs on average, relative to
male patients; however, the differences in PD response were
not clinically significant.
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